

CyDrone
PROJECT PLAN

Team sdmay19-35

Dr. Ali Jannesari, Client & Adviser

Bansho Fukuo, Test Engineer & Sensors Hardware Developer
Ian Gottshall, Scrum Master & Full Stack Developer

Jianyi Li, Test Engineer & Back-End Developer
Jawad M Rahman, Meeting Manager & Embedded Systems Developer

Sammy Sherman, Report Manager & Front-End Developer
Mehul Shinde, Team Lead & Computer Vision Developer

Email: sdmay19-35@iastate.edu

Website: https://sdmay19-35.sd.ece.iastate.edu

Revised: 12/2/2018 (Version 3)

1

SDMAY19-35

Table of Contents

1 Introductory Material 4

1.1 Acknowledgement 4

1.2 Problem Statement 4

1.3 Operating Environment 4

1.4 Intended Users and Intended Uses 4

1.5 Assumptions and Limitations 5

1.6 Expected End Product and Other Deliverables 5

2 Proposed Approach and Statement of Work 6

2.1 Objective of the Task 6

2.2 Functional Requirements 6

2.3 Constraints and Considerations 7

2.3.1 Non-functional Requirements 7

2.3.2 Standards 8

2.4 Previous Work And Literature 8

2.4.1 Gazebo 8

2.4.2 AirSim 9

2.5 Proposed Design 9

2.6 Assessment of Proposed Solution 11

2.7 Technology Considerations 12

2.8 Safety Considerations 12

2.9 Task Approach 12

2.10 Possible Risks And Risk Management 14

2.11 Project Proposed Milestones and Evaluation Criteria 14

2.12 Project Tracking Procedures 14

2.13 Expected Results and Validation 14

2.14 Test Plan 15

2.14.1 Front-end Tests 15

2.14.2 Back-end Tests 16

2

SDMAY19-35

2.14.3 Hardware Tests 17

2.14.4 Full System Tests 18

3 Project Timeline, Estimated Resources, and Challenges 19

3.1 Project Timeline 19

3.2 Feasibility Assessment 20

3.3 Risk Assessment 21

3.4 Personnel Effort Requirements 22

3.5 Other Resource Requirements 22

3.6 Financial Requirements 23

4 Closure Materials 23

4.1 Conclusion 23

4.2 References 24

3

SDMAY19-35

List of Figures

Figure 1. Overview of the dockerized system.

Figure 2. ROS communication.

Figure 3. React component, a core component of the Node container.

Figure 4. Gzweb component, a web client provided by Gazebo.

Figure 5. Detailed project schedule.

List of Tables

Table 1. Functional requirements.

Table 2. Non-functional requirements.

Table 3. Standards.

Table 4. Personnel effort requirements.

List of Definitions

ROS: Robot Operating System

WebODM: Web Open Drone Map

GzServer: The core of Gazebo, can be used independently of a graphical interface.

GzWeb: A WebGL client for Gazebo.

iframe: An HTML element used to embed another document within the current HTML

document.

Docker: A tool designed to make it easier to create, deploy, and run applications by using

containers

Dockerize: The process of converting an application to run within a Docker container

4

SDMAY19-35

1 Introductory Material

1.1 ACKNOWLEDGEMENT

Team 35’s client: Dr. Ali Jannesari

Team 35’s advisor: Dr. Ali Jannesari

1.2 PROBLEM STATEMENT

The client currently has a drone which uses a Nvidia GPU and a camera. The drone also

has a hotspot built into it and can be connected remotely via command prompt interfaces

such as SSH. Our task is to create a web portal system which can visually depict a

simulation and control the drone. In addition, the application is also responsible to create

a digital version of the real-life environment using computer vision.

The team is divided in three sub-groups with each sub-group responsible for development

in either simulation, control or the computer vision aspect of the application. The team is

following Agile methodology to deliver this project. Some of the core technologies on

which the application will be built are: ReactJS and Gazebo to run the controls and

simulation, ROS as an interface between the application and the drone and WebODM for

generation of simulations using computer vision.

1.3 OPERATING ENVIRONMENT

The operating environment for this project is a web browser front-end, connected to a

server back-end running as a desktop app on any operating system.

1.4 INTENDED USERS AND INTENDED USES

There are multiple uses of this product. It can be used for educational, research and

recreational purposes. The simulation will imitate real world flight physics, providing the

users with an interactive experience. That being said, the drone will be used in schools,

among the students of all age and experience. Students will be able to understand the laws

and concepts of physics better by using the simulator.

The product will also be used by researchers, especially those interested in the use of

sensors. Recreational users would also use this to understand how a drone works.

5

SDMAY19-35

1.5 ASSUMPTIONS AND LIMITATIONS

Assumptions

1. Hardware and operating system environment are provided through ISU, and those

resources will be sufficient for the developing the simulation software

2. Number of the user access to the simulation server are limited.

3. The end user can manipulate the simulator without specific instructions.

4. Product will be open-sources.

Limitations

1. Server performance limitation - our projects are powered by the GPU, if the

provided server machines are insufficient, our team need to find or arrange for

different resources.

1.6 EXPECTED END PRODUCT AND OTHER DELIVERABLES

A fully operating simulator will meet the users’/ client’s needs by providing them the
following features:

1. An environment of their choice. For example, the user will be able to select if they
want to fly their drone on urban, rural or in a forest environment

2. Fast and robust: the application will be real-time and will facilitate fault tolerance
by back-end error-handling scripts.

3. It will be engaging to users considering the wide range of functionality the app
offers and the array of applications the app could be used for.

4. It will be accessible on the World Wide Web and will run on any major web
browser

5. It will be a cross-platform application, that is, it can be used both form desktop
and mobile

Deliverables

1. The client will receive a web-application that will be able to simulate a drone in a
variety of different environments and control the clients drone and provide
necessary data in the process. The client can then make the project into an open-
source project which can then be worked on by other developers - to be delivered
by 05/03/2019.

2. The client will receive documentation of the code, which will include a report of
what each member of the team did and the hours that they have worked - to be
delivered by 05/03/2019.

3. The client will also receive a manual which will provide a high-level description of
what the project does and how the front-end and back-end works and how they
interact. The manual will also include component diagrams and flow charts - to be
delivered by 05/03/2019.

6

SDMAY19-35

2 Proposed Approach and Statement of Work

2.1 OBJECTIVE OF THE TASK

The task is to create a web application, which is a drone simulation software using

Gazebo, which will interact with ROS. After creating the simulation software, the next

step will be to control the physical drone with that web application. The end products will

be:

– The final or main product of the project is a drone simulator and control

– The simulator will be customizable, fast and robust and must use ROS

– It will take in commands from the user and make the drone perform those commands

on different environments - forest, urban or countryside

– Once these requirements are met, the simulator would be connected to a physical drone

and it will perform according to user needs

– With help of computer vision, the application will be able to load up the real-life

surrounding of the drone in the simulator in digital form

2.2 FUNCTIONAL REQUIREMENTS

The functional requirements of this project are summarized in the table below:

Requirement Description

Video Feed The drone must broadcast real-time video captured from its on-board
camera.

Customizable
Environments

Simulation environments must be created using computer vision.

Stock
Environments

The user can load basic, pre-defined simulation environments without
using the drone camera.

Persistent
Data

Custom environments and other user data should persist for future
use.

Alerts A notification is sent to alert the user of the occurrence of a hazardous,
or otherwise important, event.

Connectivity The system must implement 4/5G, Wi-Fi, RF, Bluetooth, and GPRS in
order to ensure a connection in almost any scenario.

Statistics The web-portal must display accurate statistics about the drone and
environment.

7

SDMAY19-35

Sockets Client should connect to other clients via socket if they are viewing
their simulation.

Server Must have a simple server for serving static assets and interacting with
the database.

Database Must implement a database to store persistent data.

Authenticatio
n/Authorizati
on

Access should be restricted to only verified or permitted users.

Table 1. Functional Requirements

2.3 CONSTRAINTS AND CONSIDERATIONS

2.3.1 Non-functional Requirements

The non-functional requirements of this project are summarized in the table below:

Requirement Description

Safety The system must notify the user if a connection is lost, a collision was
detected, or any other potentially hazardous event occurs.

Reliability All data transmitted must reach its intended target.

Scalability The system must be able to handle a growing number of simultaneous
users.

Availability The system should be available to interact with 99% of the time.

Maintainabilit
y

Current and future developers should easily be able to maintain the
system.

Usability The web-portal must be easy to understand and use.

Compatibility The web-portal must be accessible from all modern browsers and
mobile devices.

Response
Time

The system must operate in real-time.

Table 2. Non-functional Requirements

8

SDMAY19-35

2.3.2 Standards

The standards to which we will adhere are listed in the table below:

NFPA 2400 The user and the capabilities provided by our web-portal must be
compliant with NFPA 2400, Standard for Small Unmanned Aircraft
Systems.

ISO/IEC
12207

Our software must follow the software lifecycle process defined by
ISO/IEC 12207 standards.

IEEE 29119-2-
2013

The software will follow this standard in terms of testing.

Table 3. Standards

The standards mentioned in the table above are explained below:

● NFPA 2400: This standard covers the operation, deployment and implementation
of Small Unmanned Aircraft Systems, where it brings public safety into
consideration [1].

● ISO/IEC 12207: This is an international standard for software life cycle processes.
Processes for managing the lifecycle of software is defined by this standard. In the
2017 version, the software life cycle processes have been divided into four groups:
agreement, organizational project enabling, technical management, and technical
processes [2].

● IEEE 29119-2-2013: This standard is defined for software test cases. This goes
through different areas of software testing, such as performance, usability,
reliability, and unit tests [3]. Our software must follow the steps defined in this
standard. This standard follows a risk-based approach to testing, which is also
used in the industry. This is also compatible with any software lifecycle process, so
we will be able to use this alongside our other standard, ISO/IEC 12207.

2.4 PREVIOUS WORK AND LITERATURE

Many similar drone simulators exist. We investigated two simulators during the first

weeks of the project: AirSim and Gazebo. Both are insufficient for the client’s needs in

their unmodified state.

2.4.1 Gazebo

Gazebo is a popular open-source robot simulator. It allows the user to set up a virtual

physics-simulated environment by dragging and dropping elements into a 3D space [4].

The simulation elements can be controlled either by C++ modules, called plugins, that are

compiled alongside Gazebo and loaded in the same runtime [5]; or by interfacing with

ROS (Robot Operating System) and receiving ROS commands from the terminal or

another program [6].

9

SDMAY19-35

Gazebo has several drawbacks. Firstly, Gazebo is very resource-heavy, requiring a Nvidia

GPU to run [4]. Additionally, it is not cross-platform, since it designed specifically for

Ubuntu, and it is not compatible with Windows [7]. These shortcomings prevent us from

using it without modification. However, it does boast myriad features and customizability

options.

Gazebo has an official JavaScript web client called Gzweb [8]. Gzweb is merely a web-

based user interface for Gazebo; it still requires a running Gazebo simulation to function.

2.4.2 AirSim

AirSim is an open-source drone simulator created by Microsoft. It also has support for

simulating autonomous vehicles [9]. It uses Unreal Engine for its physics and graphics [9].

For input, it supports drone remote controls, some popular flight controllers, keyboard

controls, and programmatic controls [9].

AirSim has several advantages over other simulators. AirSim’s graphics are excellent

compared to most others, and the software is distributed under the MIT license, giving us

freedom to use and modify it if we choose to [9]. However, Unreal Engine is complex, and

using this project would likely mean learning the engine, which would add many hours to

our workload and introduce risks in the form of incomplete knowledge of the platform.

2.5 PROPOSED DESIGN

Our web-portal will be designed using the JavaScript UI library known as React. React was

chosen because it is efficient, easy to implement, promotes maintainability and usability,

and is maintained by Facebook which implies it will likely be around for a long time. The

design of our web-portal consists of: a horizontal bar on top of the page with the website

title, a navigation menu to access the site’s functionality, a display of the simulation, a

display of the drone’s view, flight history, and any other pages that are added. The web-

portal, as well as all static assets, will be served from a simple, standard HTTP server. The

server will also handle all HTTP requests sent from clients as well as establish

communication between a client and the drone.

We can group our project’s specific components into 3 critical sections: a drone simulator,

real drone control, and computer vision to take the drone’s camera feed and convert it to

an environment to be loaded in the simulator. Initially, we will direct our focus primarily

on the drone simulation and computer vision aspects. Then, we will begin interfacing with

a real drone.

In an effort to implement our simulator, we have decided to utilize Gazebo and take

advantage of its web client, GzWeb. We made this decision after conducting research and

designing numerous early prototypes. Initially, our research lead us to believe that Gazebo

would not be scalable because Gazebo runs entirely on the server and is quite resource

intensive. Since scalability is a necessity, we decided to reduce the server’s workload

10

SDMAY19-35

attempt to design our own simulation environment using ThreeJS, a 3D rendering library

written in JavaScript, and CannonJS, a JavaScript physics library in order to greatly reduce

the server’s workload. After a few rough prototypes, we began to see the emergence of 2

major flaws in our decision to implement our own simulator: we are reinventing

functionality that other people have already invented, and not all clients will be strong

enough to perform the heavy computations required by the simulator. As a result, we

determined that using Gazebo and, if necessary, implementing a network of parallel

computers to mitigate scalability issues is the best option.

In order to incorporate Gazebo into our design, whenever a client connects to our HTTP

server, the server must instantiate a GzServer with a unique port number as well as a

corresponding GzWeb client. The GzServer instance will run the simulation on the server

and will transmit all the updates to all its connected GzWeb clients via web sockets. Using

the data received over the web sockets, the GzWeb client will render the scene and allow

the client to view and interact with the simulation. All user interaction, such as typing a

ROS command in the terminal, pressing a key to move the drone, or joystick movement,

will be communicated to the server via the established web socket where it will be

interpreted and passed to the corresponding GzServer. If a client wishes to simply observe

another client’s ongoing simulation, the server will serve them a view-only GzClient with

the appropriate port number for the desired GzServer. As shown in figure 1 below, the

GzWeb and React components will be dockerized. This will greatly improve the

deployment time and avoid any dependency issues. There will only be one Node container

at a time, but every client will have their own GzWeb container. Refer to figures 3 and 4

for high-level descriptions of the Node and GzWeb components.

Figure 1. Overview of the dockerized system.

11

SDMAY19-35

Figure 2, below, shows a high-level description of how ROS is used in communicating with

our drone. As client input is received, it is sent through a serial node which communicates

with the drone and the master node. The master node handles incoming commands,

translates them, and communicates with the appropriate node between takeoff and

movement or landing nodes.

Figure 2. ROS communication

Implementation of computer vision will initially require the use of a Raspberry PI and a

camera to mock a drone. The video feed from the drone will need to be sent to the server

to be converted into an environment to be rendered in the simulator. Computer vision

will provide us with orthographic photographs that, when enough have been gathered,

can be converted to 3D models. The environments generated will be saved for use as

environments to choose from when initializing a simulation session or controlling a real

drone in that specific location. Upon successful implementation, the code will be ported

to the actual drone for use in controlling of a real drone.

2.6 ASSESSMENT OF PROPOSED SOLUTION

React is a good choice for developing the UI but does not come with as much functionality

out of the box as its competitors, such as AngularJS. For example, Angular comes

equipped with mobile development tools that make converting our web-page to a mobile

application code easily. React, on the other hand, requires that we switch to React Native

and utilize libraries for converting React code to React Native code. However, Angular

requires knowledge of TypeScript and the templating used is arguably more difficult to

maintain. Overall, React is a more simple and effective solution for our project.

We decided on Gazebo for our simulator, but we may still run into scalability issues. We

have mentioned possibilities for mitigating this risk but have not determined the

12

SDMAY19-35

performance threshold of the server hosting the simulation. As a result, we can’t

conclusively say that scalability will or will not be an issue. Omitting scalability, Gazebo

provides many benefits, such as: various useful standard functionalities, a strong

community with many examples, simple ROS integration, and a prebuilt web-client.

Compared to the early prototypes in which we implemented our own simulator, the

benefits of using Gazebo are highly favorable, implying Gazebo is a good decision for this

project.

2.7 TECHNOLOGY CONSIDERATIONS

Section 2.4 discusses existing code bases that could be modified for our purposes.

2.8 SAFETY CONSIDERATIONS

Since our team will using the personal computer and drone that client provided. Our team

concerned about that hardware would be secure by the during the testing stage, like

battery power supply. One other concern is on the drone that provided should be well

simulated before the real testing, to reduce the risk of the mechanical damage to the

drone.

2.9 TASK APPROACH

As shown in figure 1, our project can be broken into 2 major software-based components.

The first is the Node container which contains the React app as our main UI, the database

controller for interacting with the database, and the drone controller for managing and

interacting with drones. Since Docker containers are ephemeral, we will not store the

database inside the container itself, hence why it is displayed outside of the Node

container in Figure 1. The most important component of the Node container is the React

app component, which serves as the primary UI that the user will interact with.

Figure 3. React component, a core component of the Node container.

13

SDMAY19-35

As shown in Figure 3, the component starts at the Router, which depends on the

Simulator, History, and Drone Control components. As input is received via URL through

the Router component, the appropriate component is rendered. The Drone Control

component depends on an external drone controller which is provided by the Node

container. Similarly, the History component depends on an external database controller

which is also provided by the Node container. However, the Simulator component

depends on an external interface that is provided by a different container, the GzWeb

container. In order to display the output of the GzWeb container inside the Simulator

component of the React app, we can use an iframe to embed the web-page in another.

This means that the GzWeb container must be initialized before the Simulator component

is fully able to render or the iframe will not be able to display the content. In order to

initialize the GzWeb container, the Node container will have to spawn an instance of the

GzWeb container as a sibling container.

This brings us to the other major component of our system, the GzWeb container. The

GzWeb container contains an instance of Gazebo running in headless mode, referred to as

GzServer, ROS topics for communication, provided by the ROS component, and the

GzWeb component. The GzWeb component consists of a Node server, a GzBridge

component for communicating with GzServer via ROS topics, and Gz3D component for

rendering the graphical aspect of GzServer.

Figure

4. Gzweb component, a web client provided by Gazebo.

As shown in Figure 4, the GzWeb component starts at the Node server which depends on

the GzBridge and Gz3D components. When the GzWeb container starts, a GzServer

component is initiated and the GzBridge component of GzWeb attempts to establish a

connection and begin communication with GzServer using web sockets and ROS topics.

14

SDMAY19-35

There is only one valid URL and when that is visited, the Node server will render the

graphical aspect of the GzServer simulation. Gz3D handles user input, such as key presses,

and sends them to GzServer via ROS topics sent through GzBridge. When GzBridge

receives messages from GzServer, Gz3D updates the graphical components to accurately

display what GzServer is simulating.

2.10 POSSIBLE RISKS AND RISK MANAGEMENT

As we proceed, we will likely uncover new, unforeseeable issues. However, some issues

that may pose a problem to our current design are: lack of suitable equipment,

incompatible software, a general unfamiliarity with the technology being used, or

insufficient client-supplied requirements.

In order to mitigate some of these risks, we will work with our client to ensure that we

obtain the equipment necessary to deliver their product. However, this may also require

that we work directly with the equipment supplier. In an attempt to familiarize ourselves

with any and all technologies we require, we will conduct thorough research and test

often as we develop. We conduct weekly meetings with our client which we will use to

ensure that all requirements are clearly described and understood before attempt to plan

our solution.

2.11 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

The two main milestones are the abilities to simulate a drone from the web-client and

control a real drone from the web-client. As the project progresses, more functionality will

be added. With the additional functionality, milestones will also be added. Our evaluation

criteria will be: performance, accessibility, portability, and safety. Also, our simulation

should be comparable to existing simulators such as Gazebo or AirSim.

2.12 PROJECT TRACKING PROCEDURES

Our group will utilize tools such as Gitlab and Trello to keep track of progress. Trello will

be used to maintain and organize general, overall project progress. We will use Gitlab to

store our code and create issues that refer to specific segments of code. This way we can

keep the overall flow separate from our code specific issues and tasks.

2.13 EXPECTED RESULTS AND VALIDATION

The result of the project will be a web-based drone simulator and controller. The user will

be able to log into their account, view their created environments and models,

select/edit/delete environments and models, and utilize them to simulate a drone. The

simulation will be quick, smooth, and realistic.

15

SDMAY19-35

2.14 TEST PLAN

2.14.1 Front-end Tests

In addition to automated unit tests using Jest, manual tests of the front-end must be
conducted to ensure a high-quality user experience. This section describes tests for the
web front-end.

1. Simulation Functionalities
a. Open the simulation site in Chrome, login with a test user account, and

load a drone control simulation environment.
b. Try using each of the keyboard controls.
c. Try using each of the controls on the UI control panel.
d. Try entering each of the valid commands into the terminal.

Success Criteria: Each command responds in less than 0.25 seconds and
performs the correct action.
Failure Criteria: Any result other than the success criteria.

2. Environment Editor Functionalities
a. Open the simulation site in Chrome, log in with a test user account, and

load a simulation environment for editing.
b. Try placing an object.
c. Try saving and reloading the environment.

Success Criteria: Each command responds in less than 0.25 seconds and
performs the correct action.
Failure Criteria: Any result other than the success criteria.

3. Window Scaling
a. Open the simulation site in Chrome, log in with a test user account, and

load a simulation environment.
b. Resize the window to a quarter of the size of the screen.
c. Verify that the simulation view resized accordingly.
d. Repeat steps a - c with the environment editor.

Success Criteria: The window resizes properly, and all UI elements are
visible and usable.
Failure Criteria: Any result other than the success criteria.

4. Safety Alerts in Simulation
a. Open the simulation site in Chrome, log in with a test user account, and

load a simulation environment.
b. Try to crash the drone into a nearby obstacle.
c. Verify that a warning is displayed to the user at least 3 seconds before

impact.
d. Reload the simulation and bring the battery level down to 20%.

16

SDMAY19-35

e. Verify that a warning is displayed to the user.
f. Reload the simulation and begin moving the drone away from the origin

point.
g. When the drone reaches a distance of 2,000 feet from the origin point,

verify that a warning is displayed.

Success Criteria: All warnings are displayed at the proper time.
Failure Criteria: Any result other than the success criteria.

5. Browser Compatibility
a. Repeat tests 1-4 using Firefox.
b. Repeat tests 1-4 using Safari.
c. Repeat tests 1-4 using Edge.

Success Criteria: Tests 1-4 pass on the different browsers.
Failure Criteria: Any result other than the success criteria.

2.14.2 Back-end Tests

This section describes test plans for the back-end server. Our back-end server is tested
using Postman as discussed above.

6. Server Responsiveness
a. Ensure that the server is running.
b. From a different machine, load and run each Postman test.

Success Criteria: All of the Postman tests pass.
Failure Criteria: Any result other than the success criteria.

7. Login Security
a. Try to log into the server with a valid username but an invalid password.
b. Try to log into the server with an invalid username.

Success Criteria: The user cannot access the system.
Failure Criteria: Any result other than the success criteria.

17

SDMAY19-35

2.14.3 Hardware Tests

This section describes test plans for the drone’s performance when being controlled by the
simulator.

8. Calibration
a. Place the drone in an open field.
b. Open the simulation site in a web browser, log in with a test user account,

and load a simulation environment.
c. Synchronize the simulation to the drone.
d. Control the using each of the basic movement and rotation controls and

verify that the positional data match after each trial.
e. Repeat step d 2 times for accuracy.

Success Criteria: The change in position/rotation observed differs from the
simulation by less than a 0.1% margin of error.
Failure Criteria: Any result other than the success criteria.

9. Safety Alerts for Real Control
a. Open the simulation site in a web browser, log in with a test user account,

and load a simulation environment.
b. Synchronize the simulation to the drone.
c. Move the drone towards a nearby obstacle, being careful not to actually

crash it.
d. Verify that a warning is displayed to the user at least 3 seconds before

predicted impact.
e. Bring the battery level down to 20%.
f. Verify that a warning is displayed to the user.
g. Recharge the battery enough to complete the next steps.
h. Begin moving the drone away from the origin point.
i. When the drone reaches a distance of 2,000 feet from the origin point,

verify that a warning is displayed.

Success Criteria: All warnings are displayed at the proper time.
Failure Criteria: Any result other than the success criteria.

18

SDMAY19-35

2.14.4 Full System Tests

10. Flight Tests
a. Place the drone in an open field.
b. Open the simulation site in a web browser, log in with a test user account,

and load a simulation environment.
c. Synchronize the simulation with the drone.
d. Make the drone take off.

e. Control the basic movements and rotational controls.

f. Ensure that the drone is doing exactly as asked and verify the positional

data match.

g. Begin moving the drone away from the origin point.
h. Make sure that the drone behaves in the same way at different altitudes: 35

feet, 50 feet, and 65 feet.

Success Criteria: The drone behaves as expected at different altitudes.

Failure Criteria: Any result other than the success criteria.

11. Video and Imaging Tests
a. Place the drone in an open field.
b. Open the simulation site in a web browser, log in with a test user account,

and load a simulation environment.
c. Synchronize the simulation with the drone.
d. Make the drone take off.

e. Control the basic movements and rotational controls.

f. Ensure that the simulation is receiving video from the drone’s camera.

g. Ensure that the quality of this video is as expected and there is little to no
lag in the video module of the simulation.

Success Criteria: The drone delivers good quality images and videos.
Failure Criteria: Any result other than the success criteria.

19

SDMAY19-35

3 Project Timeline, Estimated Resources, and Challenges

3.1 PROJECT TIMELINE

This project will be worked on by the team, complying with Agile model of development.

This would include regular grooming sessions in well-defined sprints.

The grooming session will take place at the beginning of every 2-week-sprint when there

will be requirement gathering for the functionality being delivered. Story cards will be

generated, and each card will be assigned to a team member.

Each sprint will comprise of two weeks and on Friday of each sprint there will be a sprint-

demo in presence of the adviser/client. The sprint-demo will reflect on functionalities

ready to ship.

A detailed schedule in form of a Gantt chart for the project is provided below:

Figure 5. Detailed project schedule.

20

SDMAY19-35

The Agile process of software development enables flexibility in the project schedule, and

since the requirements might be changed, the schedule is subject to change. There will

however be well-defined sprints comprised of two weeks.

The Gantt chart above lays out the schedule for Phase 1 of the project. The plan for Phase 2

(i.e. semester 2) of the senior design project is laid out in six sprints, but the details of the

sprints will be subjected to more changes as the project progresses and the team does

more sprint planning sessions next semester.

The proposed timeline is based on the team’s current knowledge of the project. The

timeline will be updated by every two weeks. The team planned to collaboratively deliver

on the first few sprints and then work individually on well-defined story cards groomed in

sessions before the start of the sprint.

The team has accomplished several designated tasks and the tasks that have not been

accomplished have been rolled over to the next sprints. The time and effort estimation for

each task was decided upon by the team, based on which each sprint was comprised of

sufficient number of tasks. As the project progresses, the team’s work velocity will see an

increase and the sprints will include more complex and bigger tasks.

The team also plans to meet multiple times on a weekly basis to update everyone with the

status of respective story cards. The team will also separately meet with Dr. Ali Jannesari,

the adviser and client of the project, on a weekly basis having sprint demo every other

week.

3.2 FEASIBILITY ASSESSMENT

We are developing a web application that simulates a drone in a variety of environments

and also controls the physical drone. Specifically, we will have a simulator integrated with

Gazebo, allowing us to create a realistic drone simulation. The commands from the

simulation will be sent to the server, which will translate the commands to ROS

commands and control the drone. These tasks can be broken up into the following

functions:

1. The simulation will be cross-platform and operate the drone

2. Multiple sessions must be allowed, and users can observe the simulation of the

user who operates the drone

3. It must be able to translate the simulation controls to ROS instructions in order to

control the drone using a web application

We believe that each of these functions are feasible to complete. Below is a discussion of

how each function can be completed:

1. We have succeeded in serving a GzWeb interface from the server to the client, and

it runs correctly in all modern browsers. We can modify the GzWeb interface

using C++ plugins to operate the drone by using ROS instructions.

21

SDMAY19-35

2. Supporting multiple sessions is a simple matter of keeping multiple instances of

Gazebo running at once. The GzWeb library directly supports this. To allow other

users to observe a simulation, we can serve those users a modified GzWeb client

linked to the target simulation that has controls disabled.

3. Translating controls to ROS is complex but feasible. At its core, this is simply a

matter of matching the propeller speeds to the simulation at any given point in

time. We should be able to take user input and publish to ROS topics based on the

desired propeller speeds.

Below are our stretch goals for each major function:

1. The simulator will be fully compatible with all major browsers. The system will be

designed in such a way that we could add more control schemes other than ROS

easily.

2. Clients will be able to create new simulations on the fly and join in-progress

simulations through a simple menu on the website. Simulations will not

experience any performance drop from adding more viewers.

3. The system will support all ROS commands relevant to drone flight.

3.3 RISK ASSESSMENT

The major challenges and risks that we might face are the following:

● Implementing Gazebo on the server that will simulate the realistic movement and

used by multiple users. Gazebo represents a learning curve to overcome, so our

time estimates may be inaccurate if some features turn out to be more difficult to

implement than we expected. Additionally, it will limit our options in terms of

server machines due to its dependence on Ubuntu.

● Calibrating the drone with the simulation. Even small margins of error could

create significant discrepancies between the simulation and the real drone. This

will require rigorous testing, and it may introduce issues when switching between

physical drones, since attributes such as weight distribution and rotor speeds will

all change.

● The simulation being heavily dependent on modern graphics and 3D modelling

may make the application slow. Reducing this delay will be very challenging. It

may become impossible to ensure smooth performance on machines with low CPU

and graphics capabilities, such as mobile devices. In this case, we will have to

shrink the scope of the project.

These risks are unavoidable given the nature of our project, but our feasibility analysis

suggests that the project should be able to succeed despite these risks.

22

SDMAY19-35

3.4 PERSONNEL EFFORT REQUIREMENTS

We expect each member to work an average of 9 hours per week. The project duration is

28 weeks, so each member will have an expected workload of 252 hours over two

semesters. This value is approximate and may vary slightly for each member, but we do

not expect significant variance among members, since member roles can be shifted if all

tasks get completed in a specific area. The following table summarizes the expected

workload for each team member within two semesters:

Names Roles Expected
workload (hours)

Mehul Shinde Computer Vision Developer, Team Lead 252

Ian Gottshall Full Stack Developer, Scrum Master 252

Bansho Fukuo Sensor Hardware Developer, Test Engineer 252

Jianyi Li Back-end Developer, Testing Engineer 252

Sammy Sherman Front-end Developer, Report Manager 252

Jawad M Rahman Embedded Systems Developer, Meeting
Manager

252

Table 4. Personnel effort requirements.

3.5 OTHER RESOURCE REQUIREMENTS

Our simulator will utilize pre-existing simulation software called Gazebo which requires a

server machine running Ubuntu with at least 30GB of storage and ample RAM to ensure

satisfiable performance.

For controlling a real drone, of course we will require a drone that will connects with

signals. Ideally, our platform will be able to select from multiple drones, so we will

potentially require numerous drones. Additionally, each drone should be compatible with

ROS to fulfill the client’s requirement of ROS compatibility.

For the video feedback, we will need a drone with camera. The video feedback will be

provided in the simulator for making video analysis.

The server will also need to be running ROS in order to communicate with both the

simulation and real drone. In addition, we will require a database in order to store the

appropriate user data.

23

SDMAY19-35

3.6 FINANCIAL REQUIREMENTS

No financial requirements have been revealed thus far as our client has informed us that

he will be able to provide us with everything that is required.

4 Closure Materials

4.1 CONCLUSION

This project will meet the client’s goal of developing an open source drone simulation and

control system in-house at Iowa State University. The team is divided into three groups:

Front-End, Back-End and Computer Vision which really serves the project to move

forward at a swift pace. The Front-End team will work on simulating the drone in Gazebo-

which includes controlling the drone not only from keyboard inputs but by using the

controls on the UI and by taking the inputs from a terminal as well. They will also add the

option to create new environments and the ability to modify them. The Front-End team

will further make sure that multiple users can access the website and see the simulation if

needed. The team-member working on Computer Vision will develop strategies to develop

real-time tracking, video analysis, and 3D image modeling. The Back-End team will

continue working on getting and processing the live video feed, server communication

and making sure that the drone will take in the commands and respond accordingly. As

all the above tasks need to work in perfect harmony, it needs the whole team to

communicate effectively within itself and with the client to make sure all the parts of the

project are synchronized properly. All the above functionality with the desired

performance once implemented in a robust web-application will meet all the client’s

requirements and will give ISU its own open-source drone-simulation and control

application. As part of the team’s senior design project, the simulator will serve as a

platform for the team to learn and implement various market technologies as well as

development practices and get an exposure in real-world software development.

24

SDMAY19-35

4.2 REFERENCES

[1] National Fire Protection Association. “Fact Sheet: Small Unmanned Aircraft Systems,”

National Fire Protection Association, Sep. 2017. [Online]. Available:

https://www.nfpa.org/assets/files/AboutTheCodes/2400/NFPA_2400_sUAS_Fact_Shee

t_2017.pdf. [Accessed: Dec. 2, 2018].

[2] International Organization for Standardization. “ISO/IEC/IEEE 12207:2017,”

International Organization for Standardization, Nov. 2017. [Online]. Available:

https://www.iso.org/standard/63712.html. [Accessed: Dec. 2, 2018].

[3] Institute of Electrical and Electronic Engineers. “IEEE 29119-2-2013 - ISO/IEC/IEEE

International Standard - Software and systems engineering — Software testing — Part

2: Test processes,” IEEE Standards Association, Aug. 23, 2013. [Online]. Available:

https://standards.ieee.org/standard/29119-2-2013.html. [Accessed: Dec. 2, 2018].

[4] Open Source Robotics Foundation, “Beginner: Overview,” Gazebo, 2014. [Online].

Available: http://gazebosim.org/tutorials?cat=guided_b&tut=guided_b1. [Accessed:

Oct. 25, 2018].

[5] Open Source Robotics Foundation, “Plugins 101,” Gazebo, 2014. [Online]. Available:

http://gazebosim.org/tutorials/?tut=plugins_hello_world. [Accessed: Oct. 25, 2018].

[6] Open Source Robotics Foundation, “ROS overview,” Gazebo, 2014. [Online].

Available: http://gazebosim.org/tutorials?tut=ros_overview. [Accessed: Oct. 25, 2018].

[7] Open Source Robotics Foundation, “ROS overview,” Gazebo, 2014. [Online].

Available: http://gazebosim.org/tutorials?tut=install_on_windows&cat=install.

[Accessed: Oct. 25, 2018].

[8] Open Source Robotics Foundation, “Gzweb,” Gazebo, 2014. [Online]. Available:

http://gazebosim.org/gzweb.html. [Accessed: Oct. 25, 2018].

[9] Microsoft, “Welcome to AirSim,” GitHub, Oct. 11, 2018. [Online]. Available:

https://github.com/Microsoft/AirSim. [Accessed: Oct. 25, 2018].

