
Senior Design Weekly Status Report

Page 1 of 3

sdmay19-35: Implementing a Web Portal System for Drone Simulation and
Control

Week 2 Report
September 21 - September 28

Client: Ali Jannesari
Faculty Advisor: Ali Jannesari

Team Members
Bansho — Test Engineer. Back-end Developer.

Ian — Scrum Master. Front-end Developer.

Li — Test Engineer. Back-end Developer.

Jawad — Meeting Manager. Back-end Developer.

Mehul — Project Lead. Back-end Developer.

Sammy — Report Manager. Front-end Developer.

Summary of Progress this Report

• Investigation of Gazebo -- All

o Determined that it has a lot of requirements that will be difficult to meet and will likely

require an alternative.

▪ Requires Ubuntu Trusty or later. Ubuntu machines cannot be easily supplied to

us by ISU. Virtual Machines can run it, but the performance suffers greatly.

▪ Needs a dedicated Nvidia GPU to process the high level of graphics.

▪ A hefty 30 GB of storage is necessary in order to store all the assets.

o Discovered that Gazebo’s web client, WebGz, does not support multiple

simultaneous users which ultimately defeats the purpose of integrating it with our

web portal.

▪ Each WebGz session requires its own Gazebo server running, which means we

would require a massive amount of computational power to support multiple

users.

o Brought light upon the issue of designing with Gazebo not being enough technical

work for a senior design project.

o Decided that the best solution is to design our own simulator that is capable of

competing with Gazebo.

▪ The simulator should be web-based, open-source, and able to integrate with

ROS.

▪ Multiple simultaneous users must be supported at any given time and the

environments should be completely customizable.

▪ Must be fast, robust, portable, and secure.

Senior Design Weekly Status Report

Page 2 of 3

• Investigation of ROS – Bansho, Jawad, Li, Mehul

o Discovered various requirements for ROS that are not met by the currently

accessible systems.

▪ The machine must be capable of running Ubuntu 14.04 LTS and ROS Indigo,

which cannot be easily supplied.

▪ The machine also must at least have an Intel i5 CPU, 4 GB of RAM and 7 GB of

storage.

o Actively working with suppliers to receive adequate equipment as ROS is a

necessity and cannot be replaced, so further technical progress cannot be made.

• Researched options for front-end of simulation – Ian, Sammy

o Determined that the most suitable library for rending our simulation environment is

Three.js for its ease of use and plethora of features and its ability to easily integrate

with React.

o Discovered a few JavaScript based physics libraries that would greatly simplify the

process of making our simulator realistic.

▪ Cannon.js – A physics engine written in JavaScript that is less than 100kb total.

This would likely be the best choice as it is JavaScript native and the file size is

relatively low.

▪ Ammo.js – A direct port of the Bullet physics engine to JavaScript. This is a

good option but has fewer positive reviews including claims of bizarre artifacts.

▪ Physijs – A Physics plugin for Three.js that is very simple to use. This is slightly

limited in features but is also a great option.

• Began setting up React app – Ian, Sammy

o Created a simple, rough draft of the React app that looks similar to the screen

sketches.

▪ Add a router that will adjust the content based on the sidebar selection.

o Began adding Three.js and experimented with simple renderings of objects.

o Organized and structured code for front end in an attempt to promote maintainability.

o The work can be found here: https://git.linux.iastate.edu/chandan/AF-Simulation in

the branch titled ‘front’.

Pending Issues

• Must receive access to adequate computers in order to run ROS and begin interaction

between ROS and our simulator. – Everyone

• Determine which JavaScript physics library, out of the 3 listed above, we should

incorporate in our simulator. – Ian, Sammy

• Need to discuss and decide on the exact design details for our simulator. – Everyone

https://git.linux.iastate.edu/chandan/AF-Simulation

Senior Design Weekly Status Report

Page 3 of 3

Individual Contributions

Team

Member

Contribution Weekly

Hours

Total

Hours

Bansho Researched possible solutions to Gazebo and

ROS issues. Project plan.

7 14

Ian Explored using Gazebo in a web-based simulator.

Project plan. Set up React app.

6 14

Jawad Explored solutions for Gazebo and ROS.

Discussed ideas for alternatives. Project plan.

8 15

Li Research alternatives to Gazebo and solutions to

ROS delay. Project plan.

7 13

Mehul Discovered requirement issues for Gazebo and

ROS. Project plan. Discussed solutions and plans

going forward.

7 15

Sammy Researched JavaScript physics libraries. Project

plan. Started setting up React app.

9 15

Plans for Upcoming Reporting Period

• Backend – Bansho, Jawad, Li, Mehul

o Receive access to equipment that can run ROS and get familiar with the

environment.

o Learn more about the ROS modules that the simulator must interact with and

investigate how our simulator should implement them.

o Determine the requirements for the backend and begin designing a solution.

o Work with frontend to start developing an environment.

• Frontend – Ian, Sammy

o Decide upon and implement one of the JavaScript physics libraries.

o Add a drone model and a floor to the basic Three.js scene.

o Implement controls that allow the drone to move up, down, left, and right.

▪ Additionally, the drone will have semi-believable physics when flying.

o Work with the backend to start developing an environment.

• Determine and design an appropriate and effective plan for our Gazebo simulator

alternative – All

