sdmay19-35: Implementing a Web Portal System for Drone Simulation and Control

Week 5 Report

October 13 – October 19

Client: Ali Jannesari Faculty Advisor: Ali Jannesari

Team Members

Bansho — Test Engineer. Back-end Developer.
Ian — Scrum Master. Front-end Developer.
Li — Test Engineer. Back-end Developer.
Jawad — Meeting Manager. Back-end Developer.
Mehul — Project Lead. Back-end Developer.
Sammy — Report Manager. Front-end Developer.

Summary of Progress this Report

- Added a terminal using the NPM package terminal-in-react
 - Fixed the width at 300 pixels and the height at 200 pixels which gives a comfortably sized terminal without taking up too much screen space.
 - Positioned the terminal using CSS. Absolutely positioned in the bottom left of the simulation.
 - o Added 2 movement functions "ascend" and "descend" to move about the Y axis.
 - Utilize the terminal's terminalQueue to execute the functions that cause movement to our drone when the user enters a corresponding function (ie. ascend 10).
- Added an on-screen joystick using the NPM package react-nipple
 - Positioned in the bottom right hand corner of the screen.
 - Only controls the following horizontal movement:
 - Forward
 - Backward
 - Left
 - Right
 - Moving the joystick will output directions for x of "left" or "right" and y of "up" or "down". The values are used to determine which movement methods should be called and which should be called together.
 - As such, the angle does not come into play at the moment, so control is not completely realistic at this time.

Pending Issues

- The functions executed through the terminal seem to always default to the default value of 10, so ascend 1000 is the same as ascend 10.
- All keyboard input is captured by the terminal when it should really only capture it when the terminal is focused.
- Minimizing/closing the terminal does not look good and should be improved.
- The joystick does not take into account the angle, which should be used in determining movement.

Individual Contributions

Team Member	Contribution	Weekly Hours	Total Hours
Bansho	Began learning about and setting up the	6	31
lan	Raspberry PI Added terminal and mapped commands to drone movement methods.	7	36
Jawad	Researched methods of converting binary to ROS commands and communication over sockets.	5	32
Li	Explored options for drones	5	30
Mehul	Researched different approaches to computer vision and converting images to 3D models/environments.	4	31
Sammy	Added on-screen joystick and mapped commands to the appropriate movement methods.	5	36

Plans for Upcoming Reporting Period

- Frontend
 - Add additional movement command support, such as: forward, backward, left, and right, and rotation about the Y axis.
 - o Consider the angle of the joystick in the movement.
 - o Improve the movement and tweak the physics to be more believable.
 - Make each propeller rotate and adjust their speed individually depending on the movement.
- Backend
 - Set up ROS and start interfacing with the front-end.
 - Set up Raspberry PI camera if it is received.
 - Start implementing computer vision techniques.
 - Establish communication between ROS and the Raspberry PI to mock the communication with the drone.

2

 \circ $\,$ Explore more drone options and determine the best choice.